DRUG RESISTANT TUBERCULOSIS

Dr Hanumanth
Postgraduate in pulmonary medicine
OBJECTIVES

To Familiarise the students with

. Definition & classification of MDR & XDR

• Current scenario of drug resistance in tuberculosis.

. Mechanism of drug resistance.

• How to Diagnose drug resistance.

• RNTCP response to drug resistance (PMDT).
Definition

• Multidrug resistance TB - resistance to 2 or more drugs which includes Rifampicin & Isoniazid.
 Most of the organism are resistant to rifampicin also resistant to isoniazid, hence considered as MDR

• Extensive drug resistance TB - MDR plus resistance to fluoroquinolines & at least one of the 3 injectables (amikacin, kanamycin, capreomycin)
DRUG RESISTANCE - CLASSIFICATION

EPIDEMILOGICAL

- Primary
- Secondary or acquired

CLINICAL AND LABORATORY

- Mono resistance
- Poly resistance
- MDR
- XDR
- TDR - ?
DRUG-RESISTANT TB: DEFINITION

EPIDEMIOLOGICAL

• Primary drug-resistance: “New Cases”
 Drug resistance in a patient who has never been treated for tuberculosis or received less than one month of therapy

• Secondary (acquired) drug-resistance:
 “Previously Treated Cases”
 Drug resistance in a patient who has received at least one month of anti-TB therapy
DRUG-RESISTANT TB: DEFINITIONS
CLINICAL & LABORATORY

- **Mono-resistant**: Resistance to a single drug 1st line

- **Poly-resistant**: Resistance to more than one drug, but not the combination of isoniazid and rifampicin

- **Multidrug-resistant (MDR)**: Resistance to isoniazid and rifampicin with or without resistance to other drugs

- **Extensively drug-resistant (XDR)**: MDR plus resistance to fluoroquinolones and at least 1 of the 3 injectable drugs (amikacin, kanamycin, capreomycin)
CURRENT SCENARIO

Percentage of new TB cases with multidrug-resistant tuberculosis*

* Figures are based on the most recent year for which data have been reported, which varies among countries.

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

© WHO 2013. All rights reserved.
- 2-3% MDR in new smear positive cases.
- 15-20% MDR in previously treated cases.
- 6-9% MDR are already XDR-TB.
- 40000 XDR - already reported across 49 countries.
- 12 Cases of TDR reported in India
- The prevalence may be almost 3 times more than its incidence
All the available evidence shows that drug resistance occurs only by mutation.

Mutation is not something new to MTB.

Mycobacterium genus is characteristic of slow mutation.

Present day MTB itself has originated by way of several mutations.
3 million years ago

Progenitor of MTB affected the primates and hominids

Mutation continued....
PRESENT DAY MTB
250 -1000 years old, mutation continues...

Emergence of several Drug resistance strains

Faulty chemotherapy

HIV co infection

Worsens the scenario

Are we heading for drug resistant TB epidemic ?

PROBABLY YES
When will you suspect drug resistance in Tuberculosis?

While on treatment

Patients having unfavourable clinical, radiological or bacteriological response even after taking an appropriate chemotherapy for an adequate period of time.

Appropriate: Right regimen, right dosage and right duration.

Adequate: Variable depending on the regimen.
Is clinical worsening always due to drug resistance?

IT IS NOT ALWAYS !!

- Check the regimen
- Review your diagnosis.
- Look for co morbidities.
- Repeat the sputum microscopy.
- Think of IRIS in extrapulmonary.
Is radiological worsening always due to drug resistance?

IT IS NOT ALWAYS !!

• Check the regimen
• Review your diagnosis.
• Look for co morbidities.
• Repeat the sputum.
• Think of IRIS in HIV Co-infection
IS BACTERIOLOGICAL WORSENING-

Failure or delay in sputum conversion due to drug resistance??

PROBABLY YES!!

Provided

- On correct regimen
- Co morbidities under control

Still Confirm by DST
IS BACTERIOLOGICAL WORSENING-

Failure or delay in sputum conversion due to drug resistance??

PROBABLY YES!!

Provided

- On correct regimen
- co morbidities under control

Still Confirm by DST
• Drug resistance is a laboratory diagnosis.

• Drug resistance -man-made, consequence of suboptimal regimens and treatment interruption

• History of prior TB treatment, particularly if recent is the most common epidemiologic risk factor for MDR-TB

• H/o treatment interruption or patients with chronic tuberculosis (sputum positive after re-treatment) & those who fail treatment (sputum positive after 5 months of treatment) are at highest risk of having MDR tuberculosis, especially if rifampicin was used throughout the course of treatment
PREDICTORS OF DRUG-RESISTANT TB ON YOUR NEW PATIENT

- Think if there is history (MDR suspect)
- Come from a country or region with high rates of drug resistance
- Had contact and significant exposure to MDR-TB in a household member or relative
- Are HIV positive. Acquired mono-rifampicin resistance is highly associated with HIV infection, especially if treatment was not daily or breaks in treatment occurred.

If drug resistance is suspected, DST should be performed for at least INH & RIF
Genesis of MDR TB

• Resistance is a man-made amplification of a natural phenomenon.
• Inadequate drug delivery is main cause of secondary drug resistance.
• Secondary drug resistance is the main cause of primary drug resistance due to transmission of resistant strains.
• MDR due to spontaneous mutations is not possible as the genes encoding resistance for anti TB are unlinked.
Development of anti-tuberculosis drug resistance

Wild M. TB strain

Strains with genetic drug resistance

Acquired drug resistance

Primary drug resistance

Spontaneous mutation

Selection: inadequate treatment

Transmission

Pablos-Mendez et al. WHO, 1997
Clinical factors promoting resistance

• Delayed diagnosis and isolation
• Inappropriate drug regimen.
 – Inadequate initial therapy
 – Incomplete course of treatment
 – Inappropriate treatment modifications
 – Adding single drug to a failing regimen
 – Inappropriate use of chemoprophylaxis
• Poor adherence and incomplete F/U
• Failure to isolate MDR TB patients
• Failure to employ DOT
• Over the counter anti TB
• Faked drugs
Mechanism of resistance

- INH
- prodrug \rightarrow active form by catalase peroxidase
 - Chromosomally mediated
 - Mutation in the KAT G–Loss of catalase/peroxidase
 - Orf, inhA, Kas A
 - Mutation in mycolic acid synthesis
 - Regulators of peroxide response
 Resistance occur 1 in 10^6 replication.
Mechanism of resistance

- Rifampicin
- Rifampicin binds to the B subunit of RNA polymerase involved in the initiation & elongation of transcription.
 - Reduced binding to DNA dependent RNA polymerase by mutation in rpoB gene
 - Clusters of mutations at “Rifampin Resistance Determining Region” (RRDR)
 - Mutation in codon 513,526,531—high level of drug resistance
 - Mutation in the codon 514,521,533—low level of drug resistance
 - Reduced cell wall permeability
 - Rifampicin resistance occur 1 in 10^8 replications.
<table>
<thead>
<tr>
<th>Drugs</th>
<th>Genes</th>
<th>Mechanism involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>KatG, inhA</td>
<td>Cat peroxidase, enoyl reductase</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>Rpo B</td>
<td>RNA polymerase</td>
</tr>
<tr>
<td>PZN</td>
<td>pncA, rpsA</td>
<td>Pyrazinamidase, ribosomal protein 1</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>embB</td>
<td>arabinosyl transferase</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>rpsL, rrs, gidB</td>
<td>16S Rrna, S12 RP</td>
</tr>
<tr>
<td>Quinolones</td>
<td>gyrA, gyrB</td>
<td>DNA gyrase</td>
</tr>
<tr>
<td>Kanamycin/amikacin</td>
<td>rrs</td>
<td>16s rRNA</td>
</tr>
<tr>
<td>Ethionamide</td>
<td>ethA</td>
<td>Enoyl-ACP reductase</td>
</tr>
<tr>
<td>PAS</td>
<td>thyA, folA</td>
<td>Thymidylate synthase</td>
</tr>
</tbody>
</table>
1. Conventional (LJ medium): Gold standard
 • egg based solid media
 • R,H,E,S
 • Proportion method
NEWER INVESTIGATIONS

- BACTEC 460 system (radiometric)-Liquid

 Direct: Inoculation of smear positive sputum in to drug containing and drug free medium.

 Indirect: Test performed with grown culture of MTB-reliable.

- BACTEC MGIT 960: MB /BACT- VERSA TREK (non radiometric)

 Performs better than BACTEC 460
MODS – MICROSCOPIC OBSERVATION DRUG SUSCEPTIBILITY

• Uses tissue culture plate - wells coated with different drugs in different concentration are used - presence of growth with INH/RIF/SM/EMB can be detected.

• Time taken 7 to 14 days
PHAGE BASED ASSAYS:

- Time taken 48 to 72 hrs
- Sensitivity and specificity -73 to 100 %

CALORIMETRIC METHODS:

- Simple for INH and Rif
- Viable mycobacteria –detected by change in colour 7 to 14 days
- Sensitivity and specificity – 98 %
MOLECULAR METHODS

Line probe assays:

- DNA strip based tests
- Nucleic acid amplification technique & reverse hybridation methods for rapid detection of mutation
- MDR TB-target genes-rpoB(R), Kat G&inh A(H)
- XDRTB-gyrA(FQ), rrs(aminoglycosides), emb B(Ethambutal)
- Rapid diagnosis with turn around time 72 hours
Gene Xpert

“Game changer” in TB Diagnosis:
targets rpoB gene

Advantage-
- Speed
- Unskilled persons
- Detects RIF resistance- 100 % sensitive
- No need for special labs
HOW RELIABLE ARE DRUG SUSCEPTIBILITY TESTS???

Conventional – Gold standard

Newer tests:

MGIT 960 (non radiometric) – faster, reliable but expensive.

MODS – cost effective - laborious and risk of cross contamination.

Molecular methods Line Probe Assay – faster, reliable, costly.

Gene Xpert is it ultimate?
CONSEQUENCES OF INACCURATE DRUG SUSCEPTIBILITY TESTS

• Misclassification of strains.

• Unnecessary change of regimen & use of reserve drugs.

• Higher toxicity & costs.

• Less chance of cure.
• Drugs available

• General principles

• Treatment of individual resistance
CATEGORIES OF ANTITUBERCULOSIS DRUGS: WHO

- **Group 1 – First-line drugs:** Isoniazid, rifampicin, ethambutol, pyrazinamide
- **Group 2 - Injectable agents:** Kanamycin, amikacin, capreomycin, streptomycin
- **Group 3 - Fluoroquinolones:** Levofloxacin, moxifloxacin, ofloxacin
- **Group 4 - Oral bacteriostatic agents:** Ethionamide, cycloserine, para-aminoosalicylic acid (PAS), prothionamide, terizadone
- **Group 5 – Unclear role:** Clofazamine, linezolid, amoxicillin/clavulanate, Imipenem/cilastatin, thioacetazone, high-dose isoniazid, clarithromycin,
• Use at least 4 drugs likely to be effective or not used earlier.
• Include drugs in group 1-5 in a hierarchical order based on potency.
• Do not use drugs for which cross resistance is reported.
• Avoid drugs that are not safe for an individual.
• Be thorough with ADR of different drugs and to manage it effectively.
ADDITIONAL IMPORTANT PRINCIPLES: WHO

- Use direct observation of treatment (DOT)
- Use daily administration, not intermittent.
- Treatment duration of a minimum of 18-24 months after culture conversion
- When possible, continue injectable for minimum six months (atleast 4 months post-culture conversion)
- Continue at least three oral drugs for full treatment duration
BUILDING A REGIMEN FOR MDR-TB

STEP 1

Begin with any first-line agents to which the isolate is susceptible

Add a fluoroquinolone and an injectable drug based on susceptibilities

<table>
<thead>
<tr>
<th>First-line drugs</th>
<th>Fluoroquinolones</th>
<th>Injectable agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrazinamide</td>
<td>Levofoxacin</td>
<td>Amikacin</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>Moxifloxacin</td>
<td>Capreomycin</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin</td>
<td>Streptomycin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kanamycin</td>
</tr>
</tbody>
</table>
BUILDING A REGIMEN FOR MDR-TB

STEP 2

If 4 drugs are not identified in Step 1:

Add second-line drugs until you have four to six drugs to which the isolate is susceptible (and preferably which have not been used to treat the patient previously)

Pick one or more of these

<table>
<thead>
<tr>
<th>Oral second-line drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycloserine</td>
</tr>
<tr>
<td>Ethionamide</td>
</tr>
<tr>
<td>PAS</td>
</tr>
</tbody>
</table>
BUILDING A REGIMEN FOR MDR-TB

STEP 3

If there are not four to six drugs available in the above categories, consider third-line drugs in consultation with an expert.

Consider use of these

<table>
<thead>
<tr>
<th>Third-line drugs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clofazimine</td>
<td>Imipenem</td>
</tr>
<tr>
<td>Linezolid</td>
<td>Clarithromycin</td>
</tr>
<tr>
<td>Amoxicillin/Clavulanate</td>
<td></td>
</tr>
</tbody>
</table>
Building a Regimen for XDR-TB

Step 1

Begin with any first-line agents to which the isolate is susceptible. Add a fluoroquinolone and an injectable drug based on susceptibilities.

First-line drugs
- Pyrazinamide
- Ethambutol

Fluoroquinolones
- By definition, fluoroquinolone resistance is expected. Still use Moxifloxacin.

Injectable agents
- Amikacin
- Capreomycin
- Streptomycin
- Kanamycin

Select agent based on history and susceptibility testing.

Use any available drug, and one of these injectable drugs.
STEP 2

Add second-line drugs until you have four to six drugs to which the isolate is susceptible (and preferably which have not been used to treat the patient previously)

Pick one or more of these

<table>
<thead>
<tr>
<th>Oral second-line drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycloserine</td>
</tr>
<tr>
<td>Ethionamide</td>
</tr>
<tr>
<td>PAS</td>
</tr>
</tbody>
</table>

With XDR-TB, often all three of these agents are necessary
STEP 3

If there are not four–six drugs available in the above categories, consider third-line drugs in consultation with an expert.

Consider use of these

<table>
<thead>
<tr>
<th>Third-line drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clofazimine</td>
</tr>
<tr>
<td>Linezolid</td>
</tr>
<tr>
<td>Amoxicillin+ Clavulanate</td>
</tr>
<tr>
<td>Imipenem</td>
</tr>
<tr>
<td>Clarithromycin</td>
</tr>
</tbody>
</table>
• Use any Group 1 agent that may be effective. (unlikely)
• Use an injectable (susceptible) for 12 months or through our treatment.
• If resistant to all injectable, still use the drug that patient has not used before.
• Use later generation fluoroquinolone – moxifloxacin (even in quinolone resistance)
MANAGEMENT GUIDELINES FOR XDR

• Use all group 4 agents that are not used extensively in the previous regimen.

• Use any 2 or 3 of group 5 drugs.

• High dose INH.

• Adjuvant surgical option.

• Ensure strict infection control.
TOTAL DURATION OF TREATMENT: MDR

- 18 months after sputum conversion.

- 24 months for chronic or extensive pulmonary damage.
MDR/XDR-TB: MANAGEMENT PRINCIPLES

• Treat until 3 consecutive - Ve smears (or culture negative) and a good clinical Improvement

• Initiate MDR-TB treatment under close supervision and monitoring drug toxicity

• Familiarity with RNTCP (PMDT) is a must
CATEGORY IV REGIMEN (XDR)

INTENSIVE PHASE
- Kanamycin (15-20mg/kg)
- High dose ofloxacin (800mg)
- Ethambutol (25mg/kg)
- Cycloserine (15-20mg/kg)
- Pyrazinamide (30-40mg/kg)
- Duration: 6-9 months

CONTINUATION PHASE
- High dose ofloxacin
- Ethambutol
- Cycloserine
- Duration: 18 months
MONITORING PROGRESS DURING TREATMENT

1. Clinical monitoring:
 - monthly review for the first 6 months
 - every 3 months for subsequent period
2. Sputum AFB smear & Culture:
 0,3,4,5,6,7
 9, 12, 15, 18, 21, 24
2. CXR:
 - pretreatment
 - end of IP and at the end of treatment
3. Sr. creatinine:
 monthly for first 3 months, every 3 months later
PREVENTION OF MDR

• Effective implementation of DOTS.
• Strict counselling and monitoring of patients
• Ensure strict airborne infection control measures
• Nutritional support to the patients and society
• Effective implementation of immunization in new born’s.
• Universal precautions.
• Drug resistance is a real threat to the national TB Control program.
• MDR and XDR incidence reported are only tip of the iceberg as DST facility is not available freely.
• Always suspect drug resistance if no satisfactory improvement after 4 months of ATT.
• Immediately ask for drug sensitivity testing.
Summary....

• Many available DST are too costly and unproven.

• Conventional culture is the GOLD standard.

• MGIT 960-(non radiometric) test, line probe assay and gene Xpert are promising.

• Treatment of MDR-TB is complex and costly. It is much easier to prevent than to treat. XDR-TB is even more difficult!

• Remember WHO classification of anti tubercular drugs.
Summary:

- Ideally the regimen should be guided by DST
- A patient-centered approach to DOT is an important element of successful care.
- Second-line drugs ADR are common and may be severe. Monitoring for these effects is essential.
- Be familiar with RNTCP & PMDT.
Identify the following phrase

....... I will not cut for stones even for patients in whom disease is manifest, I will leave this operation to be performed by specialist in this art.....

Hippocratic oath
NIKSHAY
A web based solution for monitoring TB patients
THANK YOU